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Abstract

In this study, we investigate the dynamics of an inverted pendulum subjected to high-frequency
excitation. In particular, we focus on bifurcation phenomena in the dynamics and analyze the effect of the
tilt of the excitation direction with respect to gravity direction on the bifurcation. It is analytically clarified
that the tilt produces stable equilibrium states different from the directions of the gravity and the excitation.
The stability of the stable equilibrium states under the effect of the tilt is discussed non-locally. Also, an
analogy of the bifurcation of the inverted pendulum to that of the buckling phenomenon is presented. The
theoretically predicted effects of the tilt are qualitatively confirmed by performing some experiments.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

A simple pendulum has an unstable equilibrium state in the upright position. The lateral
movement of the pivot by feedback control with respect to the angle and the angular velocity of
the pendulum is a well-known method of stabilization of the inverted pendulum, and the
stabilization of the inverted pendulum by the feedback control is often treated as a good example
of the application of modern control theory (for example [1]). In this study, we focus on another
stabilization method with no feedback control which has been recognized in the field of mechanics
for a considerably long time [2]. High-frequency excitation in the gravity direction realizes the
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stabilization of the unstable equilibrium state (upright position), which is the so-called ‘‘dynamics
stabilization’’ [3]. In recent years, the effect of the tilt of the excitation direction from the gravity
direction on dynamics stabilization has been a focus of research. In the case with a small tilt, the
occurrence of many kinds of bifurcations was numerically examined and the non-linear
characteristics of the bifurcations were compared with the case of the purely vertical excitation in
the gravity direction by Sudor and Bishop [4]. Weibel et al. theoretically analyzed the dynamics of
the high-frequency excited pendulum for the case with large tilt using Melnikov theory and
Poincar!e maps [5]. There have been few experimental approaches taken for dynamics stabilization
[6–8], and there is no reported experimental investigation on the effect of the tilt of the excitation
direction, to our knowledge.
In this study, we examine the effect of the tilt of the excitation direction analytically and

experimentally. In the analytical approach, it is necessary to separate the motion into components
depending on a slow time scale and a fast time scale, because the dynamics of the high-frequency
excited pendulum is represented as a superposition of fast oscillations and slow evolution.
To this end, the method of direct separation of motions [3] and the method of multiple time scales
with two time scales have been applied [9,10]. We propose here a more systematic analytical
approach by introducing three time scales, which is similar to the method proposed to analyze a
non-linear system with high-frequency modulation [11]. This approach is essentially different
from the above method of multiple time scales with two time scales, because it is a more
straightforward method; introducing more than three time scales makes it possible to yield a
higher approximate solution and the procedure of averaging is not needed. Using this method, we
transform the equation of motion of the pendulum which is a non-autonomous equation into an
autonomous equation. Then the bifurcation equation is derived and the bifurcation analysis is
performed. We analytically show the dependence of the inverted position on the variations
of the excitation frequency and the excitation amplitude due to the tilt of the excitation direction.
The difference between the maximum values of the potential at the two unstable stable
equilibrium states, which is produced by symmetry-breaking due to the tilt of the excitation
direction, causes a different manner of divergence of the dynamics of the pendulum in the case of
a large initial angle so that the pendulum cannot be stabilized in the inverted position. The
phenomenon is discussed in relation to the basin boundary of the inverted position and the non-
local dependence of the initial angle on the stability. Also, by bifurcation analysis near the
bifurcation point, bifurcation of the pendulum analogous to the buckling phenomenon is
indicated. Furthermore, through experiments performed with a simple apparatus, theoretically
predicted characteristics of the inverted pendulum depending on the tilt of the excitation direction
are qualitatively confirmed.

2. Governing equation

The analytical model of an inverted pendulum with a high-frequency excitation is shown in Fig.
1. It consists of a bob of mass m attached to one end of a light rod of length l: The other end is
periodically excited along the axis which is tilted in the gravity direction with angle g: The
amplitude and frequency of excitation displacement are a and N: Then the kinetic energy K and
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potential energy V are expressed as

K ¼
1

2
m l2

dy
dt

� �2
þa2N2 sin2 Nt

(

� 2laN
dy
dt

cos g sin y� sin g cos yð Þ sinNt

)
; ð1Þ

V ¼ mglðcos y� 1Þ: ð2Þ

The Lagrangian is defined by L ¼ K � V and the Lagrange’s equation of motion is expressed as

d

dt

@L

@ðdy=dtÞ

� �
�

@L

@y
¼ 0: ð3Þ

Then, the equation of motion is obtained:

d2y
dt2

�
g

l
sin y�

aN2

l
ðcos g sin y� sin g cos yÞ cosNt ¼ 0: ð4Þ

The length and time are normalized using l and 1=N respectively. We denote the dimensionless
quantities of t and a with tn ð¼ NtÞ and an ð¼ a=lÞ: Then, by taking into account a slight viscous
damping effect, we obtain the dimensionless equation of motion

.yþ m’y� o2 sin y� a sinðy� gÞ cos t ¼ 0; ð5Þ

where o2 ¼ ðg=lÞ=N2; o denotes the ratio of the excitation frequency to the natural frequency of
the pendulum around the state, where the pendulum hangs down, in a linear sense. The dot
denotes the derivative with respect to tn: In Eq. (5) and hereafter, the asterisk is omitted.
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3. Theoretical analysis

3.1. Bifurcation equation

In this section, we derive an approximate bifurcation equation from the equation of motion.
Before applying the analytical method, we perform the scaling of some parameters according to

o2 ¼ e2 #o2; a ¼ e #a; m ¼ e #m; ð6Þ

where 4 denotes ‘‘of the order Oð1Þ’’ and e is a bookkeeping device. Then, the dimensionless
equation of motion is

.y� e2 #o2 sin y� e #a sinðy� gÞ cos t ¼ 0: ð7Þ

We analyze Eq. (7) using the method of multiple scales [12] introducing three time scales. We seek
an approximate solution in the form

yðt; eÞ ¼ y0ðt0; t1; t2Þ þ ey1ðt0; t1; t2Þ þ e2y2ðt0; t1; t2Þ þ?; ð8Þ

where t0 ¼ t; t1 ¼ et; and t2 ¼ e2t: Substituting Eq. (8) into Eq. (7) and equating coefficients of like
powers of e yield the following equations of the orders Oð1Þ; OðeÞ; and Oðe2Þ:

Oð1Þ: D2
0y0 ¼ 0; ð9Þ

OðeÞ: D2
0y1 ¼ �2D0D1y0 � #mD0y0 þ #a sinðy0 � gÞ cos t0; ð10Þ

Oðe2Þ: D2
0y2 ¼ � 2D0D1y1 � 2D0D2y0 � D2

1 y0 � #mðD0y1 þ D1y0Þ

þ #o2 sin y0 þ #a cosðy0 � gÞy1 cos t0; ð11Þ

where Dn ¼ @=@tn: The general solution of Eq. (9) can be written as

y0 ¼ c1ðt1; t2Þt0 þ c0ðt1; t2Þ: ð12Þ

We note that the first term is a secular term. For a uniform expansion, this term must be
eliminated by setting c1 to zero. Then the general solution becomes

y0 ¼ c0ðt1; t2Þ: ð13Þ

We substitute Eq. (13) into Eq. (10) and obtain

D2
0y1 ¼ #a sin ðy0 � gÞ cos t0: ð14Þ

The right-hand side does not contain any terms that produce secular terms in y1: The particular
solution of Eq. (14) becomes

y1 ¼ � #a sinðy0 � gÞ cos t0: ð15Þ

Furthermore, substituting y1 into Eq. (11), we have

D2
0y2 ¼ � D2

1y0 � #mD1y0 þ #o2 sin y0 � 1
4
#a2 sin 2ðy0 � gÞ

þ f2 #a cos ðy0 � gÞD1y0 þ #m #a sinðy0 � gÞg sin t0

� 1
4
#a2 sin 2ðy0 � gÞ cos 2t0: ð16Þ
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Because the terms which do not contain sin t0 and cos 2t0 produce a secular term in y2; the sum of
these terms must be set to zero as follows:

D2
1y0 þ #mD1y0 � #o2 sin y0 þ 1

4
#a2 sin 2ðy0 � gÞ ¼ 0: ð17Þ

Then, multiplying both sides by e2 yields the following equation:
.y0 þ m’y0 � o2 sin y0 þ 1

4
a2 sin 2ðy0 � gÞ ¼ 0: ð18Þ

Because y is equal to y0 in neglecting the error of OðeÞ from Eq. (8), we can approximately express
y by y0: Therefore from Eq. (18), the equation governing the motion of the pendulum can be
described as follows:

.yþ m’y� o2 sin yþ 1
4

a2 sin 2ðy� gÞ ¼ 0: ð19Þ

As a result, the governing equation (5), which is non-autonomous, is transformed into the
autonomous differential equation (19) by using the method of multiple scales with three time
scales. Also, Eq. (19) with d2=dt2 ¼ d=dt ¼ 0 leads to the bifurcation equation

F � o2 sin y� 1
4

a2 sin 2ðy� gÞ ¼ 0: ð20Þ

3.2. Higher order analysis in the steady state

In this section we discuss the small oscillation which is mentioned in Refs. [13,14]. The solution
of the order of OðeÞ is expressed from Eqs. (8) and (15) as follows:

ey1 ¼ �e #a sinðy0 � gÞ cos t0 ¼ a sinðy0 � gÞ cos t0Eaðy0 � gÞ cos t0: ð21Þ

Also, from Eq. (18) with .y0 ¼ ’y0 ¼ 0; y0 in the steady state satisfies the following equation:

y0 ¼
a2g

a2 � 2o2
; ð22Þ

where Oðy2Þ is neglected. Substituting Eq. (22) into Eq. (21), we can rewrite ey1 as follows:

ey1 ¼
2ao2g

a2 � 2o2
cos t0E

2o2g
a

cos t0; ð23Þ

where we assume o2=a251: Therefore, the small oscillation has the same frequency as the
excitation frequency and the amplitude is in inverse proportion to the excitation amplitude.

3.3. Bifurcation analysis

Equilibrium states satisfy the bifurcation equation (20). Their stabilities can be also estimated
by using the potential energy of the system. The equivalent dimensionless potential energy U is
expressed using F as follows:

U ¼ �
Z

F dy ¼ o2 cos y� 1
8

a2 cos 2ðy� gÞ: ð24Þ

We can estimate the stability of the equilibrium states by the sign of d2U=dy2 ð¼ dF=dyÞ
according to the argument in Ref. [15].

ARTICLE IN PRESS

H. Yabuno et al. / Journal of Sound and Vibration 273 (2004) 493–513 497



3.3.1. Variation of the stable inverted states depending on the excitation amplitude
Figs. 2 and 3 show the relationship between the excitation amplitude and the stable inverted

states in the cases of vertical excitation along the gravity direction and tilted excitation
respectively, where the solid and dashed lines denote stable and unstable equilibrium states
respectively. First, from comparing (a) and (b) in Figs. 2 and 3, it is seen that stable equilibrium
states exist in a lower excitation amplitude range when the excitation frequency is higher. In the
case of the excitation along the gravity direction (along the purely vertical direction), the stable
equilibrium states are in the vertical upright position, y ¼ 0; as shown in Fig. 2 and are
independent of the magnitude of the excitation amplitude. On the other hand, when the excitation
direction is tilted from the gravity direction, the stable equilibrium states depend on the excitation
amplitude and as the excitation amplitude becomes larger, the stable equilibrium states approach
excitation direction ðy ¼ gÞ:With decreasing excitation amplitude, the angle of the pendulum y in
the stable equilibrium state becomes more greater than the excitation direction.

3.3.2. Variation of the stable inverted states depending on the excitation frequency

First, we consider the case of purely vertical excitation, i.e., g ¼ 0: The upright position ðy ¼ 0Þ
is a possible configuration as seen from Eq. (20). The bifurcation diagram corresponding to the
subsequent experiment ða ¼ 0:09Þ is shown in Fig. 4(a), where the stability of the equilibrium state
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is examined by the above-mentioned method [15] and the solid and dashed lines denote stable and
unstable equilibrium states respectively. The bifurcation at point PF ðo ¼ ocr ¼ a=

ffiffiffi
2

p
¼

0:005=0:0537 ¼ 0:093Þ is symmetric, which is classified as pitchfork bifurcation from the local
analysis in Section 3.2.3. If a lower excitation frequency ðo > ocrÞ is applied, the upright position
is unstable, i.e., the stable inverted position cannot be realized. However, when the excitation
frequency is sufficiently high ðooocrÞ; it becomes stable.
In the cases of before-bifurcation ðo > ocrÞ and post-bifurcation ðooocrÞ; the schematic

potential curves are described from Eq. (24) as shown in Figs. 5(a) and (b) respectively. The
maximum and minimum points of the potential curves correspond to the unstable and stable
equilibrium states respectively. Fig. 5(b) shows that the upright position ðy ¼ ys ¼ 0Þ in the case of
ooocr is stable. In the case without initial angular velocity, the initial angles between the unstable
equilibrium states (y ¼ yu1 and y ¼ yu2) for each excitation frequency realize the upright position
of the pendulum after the transient state.
Next, in Fig. 4(b), we show the bifurcation diagram in the case when a slight tilt is applied to the

line of the excitation for the gravity direction, i.e., ga0: The system undergoes a bifurcation at the
point SN; we set ocr as the value of o at the point SN. There is a symmetry-breaking imperfection
and the upright position (y ¼ 0) is no longer admissible. In the case when o is smaller than ocr

and o is close to ocr; the stable inverted state (stable equilibrium state) is more inclined than the
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tilt of the line of the excitation ðy ¼ gÞ: Henceforth ‘‘inverted state’’ means that the pendulum is
stabilized with the angle in the range of jyjop=2: With increasing excitation frequency, the
inclination of the stable inverted state from the excitation direction is decreased and at the
limitation of the excitation ðo-0Þ; the stable inverted position approaches the excitation
direction ðy ¼ gÞ:Now let us examine the global stability of the pendulum for the case of g > 0 (the
stability in the case of go0 is contrary to the following results) using the potential curve. In the
case of ooocr; the potential curve is depicted in Fig. 5(c). The two maximum potential energies at
yu1 and yu2 are different. The potential energy at the lower unstable equilibrium state ðy ¼ yu1Þ in
Fig. 4 is greater than the potential energy at the upper unstable equilibrium state ðy ¼ yu2Þ
bifurcated from the saddle-node bifurcation in Fig. 4(b). Therefore, in contrast to the case of
purely vertical excitation ðg ¼ 0Þ; even if the initial angle is between lower and upper unstable
equilibrium states for each o ðoocrÞ; the pendulum cannot always realize the stable inverted
states in the case when the initial angle is near the lower unstable equilibrium state ðy ¼ yu1Þ;
because sufficient velocity to go beyond the maximum point of the potential curve corresponding
to the upper unstable equilibrium state ðy ¼ yu2Þ remains at the upper unstable equilibrium state.
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3.3.3. Local bifurcation analysis
Next, by locally examining the bifurcation, we show that the dynamics of the inverted

pendulum is analogous to the buckling phenomenon. Assuming that y and g are small, we employ
the truncated Taylor series as follows:

sin y ¼ y� 1
6
y3 þ Oðy5Þ; cos y ¼ 1� 1

2
y2 þ Oðy4Þ;

sin g ¼ g; cos g ¼ 1: ð25Þ
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Then Eq. (19) is rewritten as

.yþ m’yþ
a2

2
� o2

� �
yþ

o2

6
�

a2

3

� �
y3 �

a2g
2

¼ 0: ð26Þ

The difference between o and the critical value for the pitchfork bifurcation mentioned in Section
3.2.2, ocr ¼ a=

ffiffiffi
2

p
; is assumed to be very small such as Oðe2Þ; where e is a bookkeeping device

different from that in Eq. (6). Then by taking into account Oðe3Þ; Eq. (26) is rewritten as

.yþ m’yþ
a2

2
� o2

� �
y�

a2

4
y3 �

a2g
2

¼ 0: ð27Þ

The above equation has the same form as the equation of motion expressing the buckling
phenomenon in the two-link model subjected to compressive force [16] and as the modal equation
expressing the well-known classical Euler buckling in a simply supported beam [17]; y and o
correspond to the displacement of the link or the mid-beam deflection and the compressive force
in those models respectively. With d2y=dt2 ¼ dy=dt ¼ 0 in Eq. (27), we obtain the bifurcation
equation as follows:

a2

2
� o2

� �
y�

a2

4
y3 �

a2g
2

¼ 0: ð28Þ

This equation is the same as the normal form of pitchfork bifurcation. The bifurcation diagram
expressing the relationship between the equilibrium state of the angle y and o is easily described
from Eq. (27) as shown in Fig. 6. In the case of g ¼ 0; the complete pitchfork bifurcation occurs.
In the case of ga0; symmetry-breaking is produced in the pitchfork bifurcation. Therefore, the
last term with g on the left-hand side in Eq. (27), which is the effect of the tilt of the excitation
direction to the gravity direction, corresponds to the effect of the imperfection due to an initial
deflection and a gravity force in the above two-link system or a simply supported beam subjected
to compressive force [15,18].
Next, we compare the non-linear characteristics of the pitchfork bifurcations which are

produced in the buckling problem under the compressive force and in the dynamics of the inverted
pendulum with high-frequency excitation. Because the coefficient of y3 in Eq. (28) is negative and
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the non-linear restoring force is of the soft spring type, the non-linear characteristic of pitchfork
bifurcation in the inverted pendulum is subcritical. On the other hand, the non-linear
characteristic of the pitchfork bifurcation in the buckling problem under the compressive force
is supercritical, as is widely recognized [16,17], because the non-linear restoring force is of the hard
spring type. Therefore the non-linear characteristic of the pitchfork bifurcation in the inverted
pendulum with high-frequency excitation is not in agreement with that in the buckling problem
subjected to the compressive force. However, there is a buckling phenomenon with the same non-
linear characteristic as in the case of the inverted pendulum with high-frequency excitation. It is
the electromagnetic buckling phenomenon. In this phenomenon, the two-ink system and the
simply supported beam subjected to electromagnetic force can undergo subcritical pitchfork
bifurcation because the equivalent non-linear restoring force due to the combination of elastic and
electromagnetic forces is of the soft spring type [19,20].

4. Experiment

We experimentally investigate the effect of the tilt of the excitation direction g on the dynamics
of the inverted pendulum with high-frequency excitation. In Fig. 7, we show the experimental
apparatus. The pendulum is free to swing on the plane with a radial bearing (pivot P) (Fig. 8). The
pivot is subjected to high-frequency excitation along a straight line offset by the angle g from the
gravity direction by an electromagnetic shaker. The displacement of the pivot is measured by a
laser displacement sensor (KEYENCE Corp., LB-02). The angle of the pendulum is measured by
an encoder (Nikon Corp., RXB1000). The bob of mass m and the length of the light rod l of the
pendulum are 2:35
 10�2 kg and 5:37
 10�2 m respectively. The angle of tilt of the excitation
direction g is calculated using the experimentally measured natural frequency of another
pendulum, which is located freely to move on the plane z � x0 as shown in Fig. 9.
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4.1. Stable inverted states

4.1.1. Variation of the stable inverted states depending on the excitation amplitude

Figs. 10 and 11 show the experimental relationship between the excitation amplitude and the
stable equilibrium state in the cases of the vertical excitation approximately along the gravity
direction (along the purely vertical direction) and the tilted excitation respectively. The black
circle denotes the magnitude of the DC component in the steady state obtained from the spectral
analysis, i.e., the stable equilibrium states of the pendulum (these plots correspond to the points
on the solid line in Fig. 2); another frequency component theoretically discussed in Section 3.2 is
mentioned in the appendix. First, by comparing (a) and (b) in Figs. 10 and 11, it is experimentally
demonstrated that the stable equilibrium states exist in a lower excitation amplitude range when
the excitation frequency is higher. Next, we can observe the effect of the tilt of the excitation on
the stable equilibrium states as theoretically predicted in Fig. 3. In the case of the excitation
approximately along the gravity direction (the purely vertical direction), it is noted from Fig. 10
that the stable equilibrium states are close to the vertical upright position, y ¼ 0; and are only
slightly dependent on the magnitude of the excitation amplitude; they are not completely
independent because the experimentally observed stable equilibrium states are not purely vertical
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due to a slight immeasurable tilt of the excitation direction. On the other hand, when the
excitation direction is tilted away from the gravity direction, it is noted from Fig. 11 that the stable
equilibrium states depend on the excitation amplitude, and as the excitation amplitude becomes
larger, the stable equilibrium state approaches the excitation direction ðy ¼ g ¼ 0:08Þ: At a lower
excitation amplitude, the angle of the pendulum y in the stable equilibrium state deviates from the
excitation direction ðy ¼ gÞ and is more inclined, as theoretically shown in Fig. 3.

4.1.2. Variation of the stable inverted states depending on the excitation frequency

Figs. 12(a) and (b) show the experimental relationship between the excitation frequency and the
stable equilibrium state in the cases of vertical excitation along the gravity direction and tilted
excitation respectively. The black circles denote the magnitude of the DC component in the steady
state from the spectral analysis, i.e., the stable equilibrium state of the pendulum (these plots
correspond to the points on the solid line in Fig. 4). We cannot observe any stable equilibrium
states except in the state, where the pendulum hangs down, in the case when the excitation
frequency is lower than N=2p ¼ 31 Hz: Comparing Figs. 12(a) and (b), we can observe the effect
of the tilt of the excitation on the stable equilibrium states as theoretically predicted in Fig. 4. In
the case of the excitation approximately along the gravity direction (along the purely vertical
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direction), it is noted from Fig. 12(a) that the stable equilibrium states are close to the vertical
upright position, y ¼ 0 (the experimentally observed stable equilibrium states are not purely
vertical due to a slight immeasurable tilt of the excitation direction), and are only slightly
dependent on the magnitude of the excitation frequency. Those stable equilibrium states
correspond to the stable equilibrium states in the symmetric subcritical pitch-fork bifurcation (the
bifurcation is not perturbed because the excitation direction is not tilted), as theoretically shown
in Fig. 4(a). On the other hand, when the excitation direction is tilted away from the gravity
direction, it is noted from Fig. 12(b) that the stable equilibrium state depends on the excitation
frequency and as the excitation frequency becomes larger, the stable equilibrium state approaches
the excitation direction ðy ¼ g ¼ 0:008Þ: At a lower excitation frequency, the angle of the
pendulum y in the stable equilibrium state deviates from the excitation direction ðy ¼ gÞ and is
more inclined, as theoretically shown in Fig. 4(b).

4.2. Experimental basin for the stable inverted states

We experimentally examine the dependence of the initial angle on the possibility of the
accomplishment of the inverted position in the case of tilted excitation. We set various excitation
frequencies and set the initial angles at white circles, white triangles, and at other locations
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without any initial angular velocity in Fig. 13. In the case when the initial angle is yð0Þ ¼
�0:37 rad (point A in Fig. 13) and the excitation frequency and amplitude are N=2p ¼ 34:5 Hz
and a ¼ 0:005 m; respectively the time history converges to stable equilibrium state close to the
upright position. As well as this case, all time histories in the cases with the initial angles marked
with the white circles in Fig. 13 converge to stable equilibrium states close to the upright position
marked with the black circles for each excitation frequency. On the other hand, in the case when
the initial angle is yð0Þ ¼ �1:081 (point C in Fig. 13) (this condition is included in the region
without marks), the time history deviates from the upright position to the state, where the
pendulum hangs down, with time as seen in Fig. 14(c). At all initial angles in the region without
marks, a qualitatively similar time history is observed.
In the case when the initial angle is positive ðyð0Þ ¼ �0:93 at point B in Fig. 13), another

transient state is observed. Hence the pendulum passes the upright position and then travels to the
state, where the pendulum hangs down, through the state with an angle with a positive sign which
is opposite to the sign of the initial angle yð0Þo0: A similar transient state is observed in the case
of the initial angle denoted by trianglesW in Fig. 13. This phenomenon experimentally shows that
the maximum value of the potential at the lower unstable equilibrium state (y ¼ yu1 in Fig. 5) of
the bifurcation diagram is higher than that of the potential at the upper unstable equilibrium state
(y ¼ yu2 in Fig. 5) bifurcated from the saddle-node bifurcation, as theoretically discussed in
Section 3.2.3.

5. Conclusions

This work addresses the inverted dynamics of a high-frequency-excited pendulum. The non-
autonomous equation of motion is transformed into an autonomous equation using the method
of multiple time scales introducing three time scales. Because this approach is systematic, the
derivation of a higher order approximate solution can be derived in a straightforward manner by
introducing more time scales. From bifurcation analysis using the obtained autonomous
equation, it is analytically shown that symmetry-breaking due to the effect of the tilt of the
excitation direction produces stable equilibrium states (inverted states) which are in a different
direction from the excitation direction and the gravity direction. The angle of inclination of the
pendulum in the stable equilibrium state is much greater than the excitation direction, and with
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increasing excitation frequency, the angle approaches the excitation direction. The basin
boundary for the realization of the inverted position is expressed by the region between two
unstable equilibrium states which are not bifurcated and produced through saddle-node
bifurcation. It is noted that the potential energy at the former unstable equilibrium state is
higher than the potential energy at the latter one. Also, the analogy of the local dynamics of the
pendulum to the buckling phenomenon is presented and it is clarified that the excitation frequency
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and the tilt of the excitation correspond to the effects of the compressive force and transverse
force in Euler-buckling under compressive force respectively. Furthermore, experiments using a
simple apparatus are performed. Experimentally obtained bifurcation diagrams are in qualitative
agreement with theoretical ones. It is experimentally observed that the inverted positions are more
inclined than the excitation direction by symmetry-breaking of the bifurcation due to the tilt of
the excitation direction. From the comparison among the transient responses for some initial
angles, the difference between the potential energy at two unstable equilibrium states is
experimentally confirmed.
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Appendix

Fig. 15 shows the time histories including the transient state in the cases of the excitation
amplitude, a ¼ 5:03 and 5:50 mm: As theoretically indicated in Section 3.2, it is experimentally
confirmed from their power spectra in the steady state, Figs. 16 and 17, that the steady states of
the pendulum include the excitation frequency component and the magnitude is increased as the
excitation amplitude decreases.
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